Self-measuring Similarity for Multi-task Gaussian Process

نویسندگان

  • Kohei Hayashi
  • Takashi Takenouchi
  • Ryota Tomioka
  • Hisashi Kashima
چکیده

Multi-task learning aims at transferring knowledge between similar tasks. The multi-task Gaussian process framework of Bonilla et al. models (incomplete) responses of C data points for R tasks (e.g., the responses are given by an R×C matrix) by using a Gaussian process; the covariance function takes its form as the product of a covariance function defined on input-specific features and an inter-task covariance matrix (which is empirically estimated as a model parameter). We extend this framework by incorporating a novel similarity measurement, which allows for the representation of much more complex data structures. The proposed framework also enables us to exploit additional information (e.g., the input-specific features) when constructing the covariance matrices by combining additional information with the covariance function. We also derive an efficient learning algorithm which uses an iterative method to make predictions. Finally, we apply our model to a real data set of recommender systems and show that the proposed method achieves the best prediction accuracy on the data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UoW: Multi-task Learning Gaussian Process for Semantic Textual Similarity

We report results obtained by the UoW method in SemEval-2014’s Task 10 – Multilingual Semantic Textual Similarity. We propose to model Semantic Textual Similarity in the context of Multi-task Learning in order to deal with inherent challenges of the task such as unbalanced performance across domains and the lack of training data for some domains (i.e. unknown domains). We show that the Multi-ta...

متن کامل

Temporal Self-Similarity for Appearance-Based Action Recognition in Multi-View Setups

We present a general data-driven method for multi-view action recognition relying on the appearance of dynamic systems captured from different viewpoints. Thus, we do not depend on 3d reconstruction, foreground segmentation, or accurate detections. We extend further earlier approaches based on Temporal Self-Similarity Maps by new low-level image features and similarity measures. Gaussian Proces...

متن کامل

Multi-task Sparse Gaussian Processes with Improved Multi-task Sparsity Regularization

Gaussian processes are a popular and effective Bayesian method for classification and regression. Generating sparse Gaussian processes is a hot research topic, since Gaussian processes have to face the problem of cubic time complexity with respect to the size of the training set. Inspired by the idea of multi-task learning, we believe that simultaneously selecting subsets of multiple Gaussian p...

متن کامل

Multi-task learning with Gaussian processes

Multi-task learning refers to learning multiple tasks simultaneously, in order to avoid tabula rasa learning and to share information between similar tasks during learning. We consider a multi-task Gaussian process regression model that learns related functions by inducing correlations between tasks directly. Using this model as a reference for three other multi-task models, we provide a broad ...

متن کامل

Multi-task Gaussian Process Learning of Robot Inverse Dynamics

The inverse dynamics problem for a robotic manipulator is to compute the torques needed at the joints to drive it along a given trajectory; it is beneficial to be able to learn this function for adaptive control. A robotic manipulator will often need to be controlled while holding different loads in its end effector, giving rise to a multi-task learning problem. By placing independent Gaussian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012